Université de Lyon, ENS de Lyon, CNRS, INRIA, Laboratoire de l'Informatique du Parallélisme valeo.ai, Paris

BUTTERFLY FACTORIZATION

$$
\begin{aligned}
& \text { Given } \mathbf{Z} \in \mathbb{C}^{N \times N} \text { with } N=2^{J}: \\
& \min _{\mathbf{X}^{(1)}, \ldots, \mathbf{X}^{(J)}}\left\|\mathbf{Z}-\mathbf{X}^{(1)} \ldots \mathbf{X}^{(J)}\right\|_{F}^{2} \\
& \text { such that } \operatorname{supp}\left(\mathbf{X}^{(\ell)}\right) \subseteq \mathbf{S}_{\mathrm{bf}}^{(\ell)}:=\mathbf{I}_{2^{\ell}-1} \otimes\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) \otimes \mathbf{I}_{N / 2^{\ell}}
\end{aligned}
$$

$$
\text { where } \operatorname{supp}(\mathbf{M}):=\left\{(i, j) \mid \mathbf{M}_{i, j} \neq 0\right\}
$$

MOTIVATIONS

REPLACE DENSE MATRICES BY BUTTERFLY MATRICES

0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

Less parameters
Faster training / inference time
$\mathbf{W} \approx \mathbf{X}^{(1)} \ldots \mathbf{X}^{(J)} \quad$ Fast $\mathrm{O}(\mathrm{N} \log \mathrm{N})$ matrix-vector multiplication
THE BUTTERFLY STRUCTURE IS EXPRESSIVE $\mathcal{B}:=\left\{\mathbf{X}^{(1)} \ldots \mathbf{X}^{(J)} \mid \operatorname{supp}\left(\mathbf{X}^{(\ell)}\right) \subseteq \operatorname{supp}\left(\mathbf{S}_{\mathrm{bf}}^{(\ell)}\right)\right\}$
Kaleidoscope representation [2]

CONTRIBUTIONS

HIERARCHICAL ALGORITHM Let $\mathbf{Z}:=\mathbf{X}^{(1)} \ldots \mathbf{X}^{(J)}$ with exact butterfly factorization. Principle: perform successive two-layer fixed-support factorizations, until obtaining J factors.

Exact recovery guarantee: the butterfly factors are recovered from \mathbf{Z} by the algorithm, in $\mathrm{O}\left(\mathrm{N}^{2}\right)$ time.
AT THE FIRST LEVEL of the unbalanced tree:

$$
\text { (FSMF) } \quad \min _{\mathbf{A}, \mathbf{B}}\|\mathbf{Z}-\mathbf{A B}\|_{F}^{2} \quad \text { such that } \quad \operatorname{supp}(\mathbf{A}) \subseteq=\mathbf{S}_{\mathrm{bf}}^{(1)} \quad \operatorname{supp}(\mathbf{B}) \subseteq
$$

Decomposition into rank-one matrices:
Observation: the rank-one supports are pairwise disjoint.

$+\mathbf{A} \cdot{ }_{\cdot N} \mathbf{B}_{N, \bullet}$

THEOREM:

(FSMF) is polynomially solvable [3] and
admits an essentially unique solution [5]

ALGORITHM to solve (FSMF) [3]:

1. Extract the submatrices $\mathbf{Z} \odot \mathcal{S}_{i}$ for $i=1, \ldots, N$
2. Perform best rank-one approximation for each submatrix

NUMERICAL EXPERIMENTS
Recovery of the butterfly factors of the DFT matrix
Noiseless setting

Noisy setting

Experiments are taken from [4]
REFERENCES

